Electric fields of motor and frontal tDCS in a standard brain space: A computer simulation study
نویسندگان
چکیده
The electric field produced in the brain is the main physical agent of transcranial direct current stimulation (tDCS). Inter-subject variations in the electric fields may help to explain the variability in the effects of tDCS. Here, we use multiple-subject analysis to study the strength and variability of the group-level electric fields in the standard brain space. Personalized anatomically-accurate models of 62 subjects were constructed from T1- and T2-weighted MRI. The finite-element method was used to computationally estimate the individual electric fields, which were registered to the standard space using surface based registration. Motor cortical and frontal tDCS were modelled for 16 electrode montages. For each electrode montage, the group-level electric fields had a consistent strength and direction in several brain regions, which could also be located at some distance from the electrodes. In other regions, the electric fields were more variable, and thus more likely to produce variable effects in each individual. Both the anode and cathode locations affected the group-level electric fields, both directly under the electrodes and elsewhere. For motor cortical tDCS, the electric fields could be controlled at the group level by moving the electrodes. However, for frontal tDCS, the group-level electric fields were more variable, and the electrode locations had only minor effects on the group average fields. Our results reveal the electric fields and their variability at the group level in the standard brain space, providing insights into the mechanisms of tDCS for plasticity induction. The data are useful for planning, analysing and interpreting tDCS studies.
منابع مشابه
بررسی اثر تحریکات الکتریکی مغز بر میزان یادگیری و مهارت حرکتی در افراد سالمند سالم: مروری نظام مند
Background and purpose: Aging is associated with brain changes and reduction in motor skill acquisi­tion that can limit its functional capacity. One of the effective interventions is using transcranial direct current stimulation (tDCS). The aim of this systematic review was to assess the effect of tDCS on learning and motor skill in healthy older adults. Materials and methods: A litera...
متن کاملtDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine.
OBJECTIVE We investigated in a sham-controlled trial the analgesic effects of a 4-week treatment of transcranial direct current stimulation (tDCS) over the primary motor cortex in chronic migraine. In addition, using a high-resolution tDCS computational model, we analyzed the current flow (electric field) through brain regions associated with pain perception and modulation. METHODS Thirteen p...
متن کاملLow Intensity Focused tDCS Over the Motor Cortex Shows Inefficacy to Improve Motor Imagery Performance
Transcranial direct current stimulation (tDCS) is a brain stimulation technique that can enhance motor activity by stimulating the motor path. Thus, tDCS has the potential of improving the performance of brain-computer interfaces during motor neurorehabilitation. tDCS effects depend on several aspects, including the current density, which usually varies between 0.02 and 0.08 mA/cm2, and the loc...
متن کاملNon-Invasive Brain Stimulation for Enhancement of Corticospinal Excitability and Motor Performance
During the past .. years, non-invasive .rain stimulation has .ecome an emerging .eld in clinical neuroscience due to its capability to transiently modulate corticospinal excitability, motor and cognitive functions. .hereas transcranial magnetic stimulation has .een used e.tensively since more than t.o decades ago as a potential .neuromodulator., transcranial current stimulation .tCS. has more r...
متن کاملPhysiological and modeling evidence for focal transcranial electrical brain stimulation in humans: A basis for high-definition tDCS
Transcranial Direct Current Stimulation (tDCS) is a non-invasive, low-cost, well-tolerated technique producing lasting modulation of cortical excitability. Behavioral and therapeutic outcomes of tDCS are linked to the targeted brain regions, but there is little evidence that current reaches the brain as intended. We aimed to: (1) validate a computational model for estimating cortical electric f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 137 شماره
صفحات -
تاریخ انتشار 2016